On the singularity of multivariate skew-symmetric models
نویسندگان
چکیده
In recent years, the skew-normal models introduced by Azzalini (1985)—and their multivariate generalizations from Azzalini and Dalla Valle (1996)—have enjoyed an amazing success, although an important literature has reported that they exhibit, in the vicinity of symmetry, singular Fisher information matrices and stationary points in the profile log-likelihood function for skewness, with the usual unpleasant consequences for inference. It has been shown (DiCiccio and Monti 2004, 2009) that these singularities, in some specific parametric extensions of skew-normal models (such as the classes of skew-exponential or skew-t distributions), appear at skew-normal distributions only. Yet, an important question remains open: in broader semiparametric models of skewed distributions (such as the general skewsymmetric and skew-elliptical ones), which symmetric kernels lead to such singularities? The present paper provides an answer to this question. In very general (possibly multivariate) skew-symmetric models, we characterize, for each possible value of the rank of Fisher information matrices, the class of symmetric kernels achieving the corresponding rank. Our results show that, for strictly multivariate skew-symmetric models, not only Gaussian kernels yield singular Fisher information matrices. In contrast, we prove that systematic stationary points in the profile log-likelihood functions are obtained for (multi)normal kernels only. Finally, we also discuss the implications of such singularities on inference.
منابع مشابه
SFB 823 Skew - symmetric distributions and Fisher information The double sin of the skew - normal
Hallin and Ley (2012) investigate and fully characterize the Fisher singularity phenomenon in univariate and multivariate families of skew-symmetric distributions. This paper proposes a refined analysis of the (univariate) Fisher degeneracy problem, showing that it can be more or less severe, inducing n (“simple singularity”), n (“double singularity”), or n (“triple singularity”) consistency ra...
متن کاملOn Fisher Information Matrices and Profile Log-Likelihood Functions in Generalized Skew-Elliptical Models
In recent years, the skew-normal models introduced in Azzalini (1985) have enjoyed an amazing success, although an important literature has reported that they exhibit, in the vicinity of symmetry, singular Fisher information matrices and stationary points in the profile log-likelihood function for skewness, with the usual unpleasant consequences for inference. For general multivariate skew-symm...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملSkew-slash distribution and its application in topics regression
In many issues of statistical modeling, the common assumption is that observations are normally distributed. In many real data applications, however, the true distribution is deviated from the normal. Thus, the main concern of most recent studies on analyzing data is to construct and the use of alternative distributions. In this regard, new classes of distributions such as slash and skew-sla...
متن کاملThe (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 101 شماره
صفحات -
تاریخ انتشار 2010